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From Macroscopic Tensile Tests to Microscopic
Mechanical Response of Components

OBJECTIVES

= Calibrate constitutive models to
uniaxial tension test data
provided by SNL for Steel A286.

= Attempt to reproduce test results
for A286 fastener tension data
with FEMs of test.

= Evaluate reduced order fastener
modelling approaches.

" |nvestigate more complicated
load cases that expose differences
in the constitutive models.




Background: Modeling Fasteners

= |n analysis of complex assemblies, fastened joints between
components should be engineered.

= There might be many fasteners, and modeling them all in
detail is not feasible.

= Reduced order fastener models must be used.

= |n transient analyses involving extreme loading conditions,
significant plastic strain can occur in the fasteners. This
requires fastener models that still accurately capture the
post-yield behavior of the actual fasteners.

With only a limited amount of tension testing data, how accurately can
we produce simplified models for various fasteners without having test
data on each one?




Background: Yield Surface

= \Von Mises Yield Criterion:

Ovm — \/%[(01 — 02)2 + (02 — 03)2 + (03 — 01)2]
(Where 01,23 are principal stresses)

= This defines a cylindrical 3D yield surface in principal stress space.
= Axis is along hydrostatic stress states
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= Oum comes from deviatoric stress S:
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Background: Constitutive Models

O-]_ Elastic unloading

= [sotropic Hardening
= Yield Surface retains its shape
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Constitutive Models Background

= Hardening Curve Definition

= Multi Linear Elastic-Plastic

= Linear piecewise hardening curve defined with discrete pairs of
equivalent plastic strain and yield stress

= Johnson-Cook
= Yield stress follows an analytical function of the equivalent plastic strain
= Can take into account strain rate dependence and temperature effects

= |deal for high strain rate deformations
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Damage Criterion

= |nitiation: Ductile damage

= Phenomenologically predicts the onset of damage due to void
nucleation, growth, and coalescence

= At alocal equivalent plastic strain (fracture strain) damage “initiates”

= Evolution: Independent of damage initiation model

= Progressive degradation of material stiffness, leading to material
failure

Exponential Damage Evolution

= Can be described exponentially
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A286 Tension Test (SNL)

A286 Uniaxial Tension
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Uniaxial Tension Calibration

‘ Y test displacement
A286 Uniaxial Tension
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Uniaxial Tension Calibration

Uniaxial Tension with Damage
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Fastener Test Setup
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Reduced Order Fastener Models

= Two types of simplified fastener models (#0-80 pictured)
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Equivalent Plastic Strain in Models
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Blind Predictions of Fastener Test Data

#0 Fastener Test vs Plug Models #0 Work-Hardened MLEP Curve
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Load (N)

Blind Predictions of Fastener Test Data
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Extrapolating MLEP to Other Sizes
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Johnson-Cook Fastener Calibrations
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Johnson-Cook Hardening Curves
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Hardening Curves

Hardening Curves

1600 - P
1400 - I
o
= 1200 - K #0
7 Ic #2
j Ic #4
" 1000 - K #6
MLEP #0
MLEP #3
_ MLEP #4
800 MLEP £6

I I I
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
Equivalent Plastic Strain



Trend of Damage Parameters

Fracture Strain
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Combined Loading




Shear

= Shearing deformations applied with BC’s similar to SNL tests.
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Shear

= Shearing deformations applied with BC’s similar to SNL tests.
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Shear then Tension

= Non-proportional loading exposes differences between
isotropic and kinematic hardening

|sotropic Kinematic
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Shear then Tension

= Non-proportional loading exposes differences between
isotropic and kinematic hardening

|sotropic Kinematic
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Shear then Tension
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Conclusions

= The hardening curve of the original material can be shifted to
approximate the hardening curve of a fastener.

= Different fasteners have different yield stresses, but the Johnson-Cook
hardening curves all have the same shape.

= All the fasteners have yield stresses between 1000 and 1300 MPa.

= |n uniaxial tension the material nonlinearities dominate, so
the plug model can sufficiently describe the fastener.

= One set of damage criterion values cannot be universally
applied for a given material. Generally, the fracture strain
varies for different specimen sizes.

= There are small differences in stress and plastic strain fields
between isotropic and kinematic hardening when plug
models undergo non-proportional loading.



Future Work

= Explore strain rate dependencies using Johnson-Cook
calibrations to dynamic data.

= Quantify the error in the damage calibrations for different
specimens of the same material.

= |nvestigate the influence of the angle at which shear loadings
are applied.

= Explore the application of non-proportional loadings (e.g.
torsion-tension) and their influences in each of the
constitutive models used.
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Minimum Principal Stress in Models
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Background: Stainless Steel A286

= Stainless steel alloy, commonly used in high performance,
high temperature applications.

= Several key advantages:
= Retains strength and corrosion resistance at high temperatures
= Can be precipitation hardened
= Heat treatable

= SNL has provided tension test data for smooth specimens,
and tension and shear test data for various sized threaded
fasteners of A286 for our study.




